Transformer architecture search (TAS) aims to automatically discover efficient vision transformers (ViTs), reducing the need for manual design. Existing TAS methods typically train an over-parameterized network (i.e., a supernet) that encompasses all candidate architectures (i.e., subnets). However, subnets partially share weights within the supernet, which leads to interference that degrades the smaller subnets severely. We have found that well-trained small subnets can serve as a good foundation for training larger ones. Motivated by this, we propose a progressive training framework, dubbed GrowTAS, that begins with training small subnets and incorporates larger ones gradually. This enables reducing the interference and stabilizing training. We also introduce GrowTAS+ that fine-tunes a subset of weights only to further enhance the performance of large subnets. Extensive experiments on ImageNet and several transfer learning benchmarks, including CIFAR-10/100, Flowers, CARS, and INAT-19, demonstrate the effectiveness of our approach over current TAS methods.
